

FUV II

Substituições Especiais

Functions that consist of finitely many sums, differences, quotients, and products of $\sin x$ and $\cos x$ are called *rational functions of* $\sin x$ and $\cos x$. Some examples are

$$\frac{\sin x + 3\cos^2 x}{\cos x + 4\sin x}, \quad \frac{\sin x}{1 + \cos x - \cos^2 x}, \quad \frac{3\sin^5 x}{1 + 4\sin x}$$

The Endpaper Integral Table gives a few formulas for integrating rational functions of $\sin x$ and $\cos x$ under the heading *Reciprocals of Basic Functions*. For example, it follows from Formula (18) that

$$\int \frac{1}{1 + \sin x} dx = \tan x - \sec x + C \tag{2}$$

However, since the integrand is a rational function of $\sin x$, it may be desirable in a particular application to express the value of the integral in terms of $\sin x$ and $\cos x$ and rewrite (2) as

$$\int \frac{1}{1 + \sin x} \, dx = \frac{\sin x - 1}{\cos x} + C$$

Many rational functions of $\sin x$ and $\cos x$ can be evaluated by an ingenious method that was discovered by the mathematician Karl Weierstrass (see p. 82 for biography). The idea is to make the substitution

$$u = \tan(x/2), \quad -\pi/2 < x/2 < \pi/2$$

from which it follows that

$$x = 2 \tan^{-1} u$$
, $dx = \frac{2}{1 + u^2} du$

To implement this substitution we need to express $\sin x$ and $\cos x$ in terms of u. For this purpose we will use the identities

$$\sin x = 2\sin(x/2)\cos(x/2) \tag{3}$$

$$\cos x = \cos^2(x/2) - \sin^2(x/2) \tag{4}$$

FUV II

Substituições Especiais

▲ Figure 7.6.1

and the following relationships suggested by Figure 7.6.1:

$$\sin(x/2) = \frac{u}{\sqrt{1+u^2}}$$
 and $\cos(x/2) = \frac{1}{\sqrt{1+u^2}}$

Substituting these expressions in (3) and (4) yields

$$\sin x = 2\left(\frac{u}{\sqrt{1+u^2}}\right)\left(\frac{1}{\sqrt{1+u^2}}\right) = \frac{2u}{1+u^2}$$

$$\cos x = \left(\frac{1}{\sqrt{1+u^2}}\right)^2 - \left(\frac{u}{\sqrt{1+u^2}}\right)^2 = \frac{1-u^2}{1+u^2}$$

In summary, we have shown that the substitution $u = \tan(x/2)$ can be implemented in a rational function of $\sin x$ and $\cos x$ by letting

$$\sin x = \frac{2u}{1+u^2}, \quad \cos x = \frac{1-u^2}{1+u^2}, \quad dx = \frac{2}{1+u^2}du$$
 (5)

Livro: Anton; Bivens; Davis; Calculus, 10th Edition, JOHN WILEY & SONS, INC., 2012.