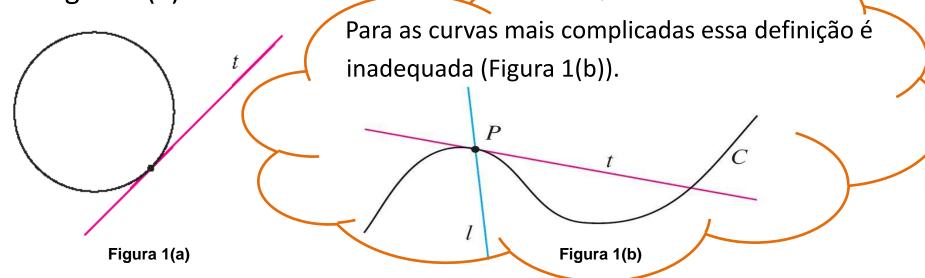
Universidade Federal de São Paulo Campus Baixada Santista

Funções de uma variável – FUV 1 Limite e Continuidade

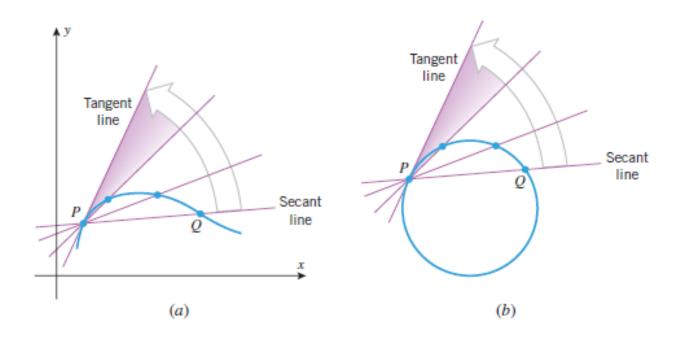
O Problema da Tangente

•A palavra tangente vem do latim tangens, que significa "tocando." Assim, uma tangente a uma curva é uma reta que toca a curva. Em outros termos, uma reta tangente deve ter a mesma direção que a curva no ponto de contato.

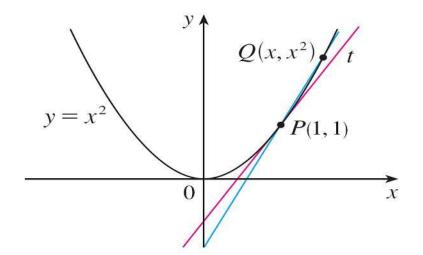
•Para um círculo, poderíamos simplesmente dizer que a tangente é uma reta que intercepta o círculo uma única vez, conforme a Figura 1(a).



O Problema da Tangente



•Encontre uma equação da reta tangente à parábola $y = x^2$ no ponto que P(1, 1).



Para encontrar a equação da reta precisamos da inclinação => necessário dois pares ordenados para determinar!!!

Observe, porém, que podemos calcular uma aproximação de m escolhendo um ponto próximo $Q(x, x^2)$ sobre a parábola (reta azul) e calculando a inclinação m_{PQ} da reta secante PQ. [Uma **reta secante**, do latim *secans*, significando corte, é uma linha que corta (intersecta) uma curva mais de uma vez.]

Exemplo 1 – continuação

As tabelas mostram os valores de m_{PQ} para vários valores de x próximos a 1.

x	m_{PQ}				
2	3				
1,5	2,5				
1,1	2,1				
1,01	2,01				
1,001	2,001				

x	m_{PQ}			
0	1			
0,5	1,5			
0,9	1,9			
0,99	1,99			
0,999	1,999			

Quanto mais próximo Q estiver de P, mais próximo x estará de 1 e, e a tabela indica que m_{PQ} estará próximo de 2. Isso sugere que a inclinação da reta tangente t deve ser m=2.

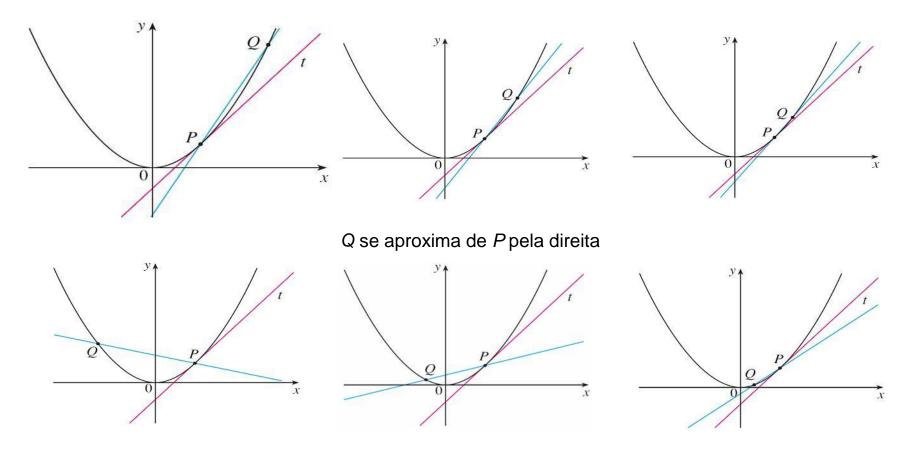
$$\lim_{Q\to P} m_{PQ}=m$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Usando a forma ponto-inclinação da equação de uma reta para escrever a equação da tangente $y - y_1 = m(x - x_1)$

$$y-1=2(x-1) \longrightarrow y=2x-1$$

Exemplo 1 – continuação

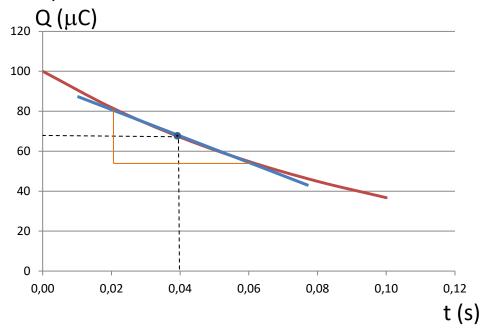


Q se aproxima de P pela esquerda

À medida que Q tende a P ao longo da parábola, as retas secantes correspondentes giram em torno de P e tendem à reta tangente t.

O flash de uma câmera opera armazenando carga em um capacitor e liberando-a instantaneamente ao ser disparado. Os dados da tabela descrevem a carga Q armazenada no capacitor (em microcoulombs) no instante t (medido em segundos após o flash ser disparado). Use os dados para esboçar o gráfico e estimar a inclinação da reta tangente no ponto t=0,04

t	Q			
0,00	100,00			
0,02	81,87			
0,04	67,03			
0,06	54,88			
0,08	44,93			
0,10	36,76			



Suponha que uma bola é solta a partir do ponto de observação no alto da Torre CN, em Toronto, 450 m acima do solo. Encontre a velocidade da bola após 5 segundos.

Se a distância percorrida após t segundos for chamada s(t) e medida em metros, então temos

$$s(t) = 4.9t^2$$

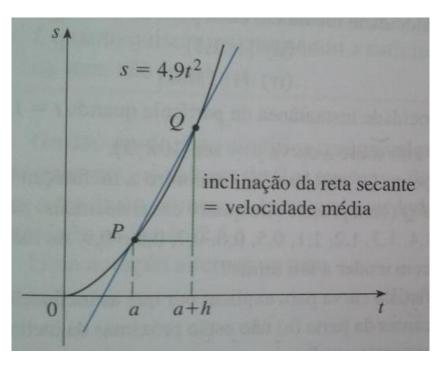
A dificuldade em encontrar a velocidade após 5 segundos está em tratarmos de um único instante de tempo (t = 5), ou seja, não temos um intervalo de tempo.

Porém, podemos aproximar a quantidade desejada calculando a velocidade média sobre o breve intervalo de tempo de um décimo de segundo, a partir de t = 5 até t = 5,1

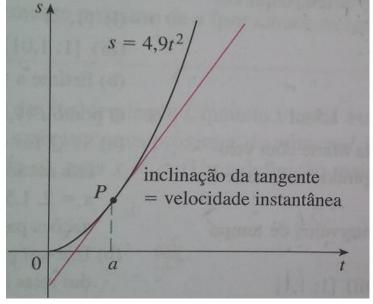
velocidade média =
$$\frac{\text{mudança de posição}}{\text{tempo decorrido}}$$
=
$$\frac{s(5,1) - s(5)}{0,1}$$
=
$$\frac{4,9(5,1)^2 - 4,9(5)^2}{0.1} = 49.49 \text{ m/s}$$

Exemplo 3 – continuação

A tabela a seguir mostra os resultados de cálculos similares da velocidade média em períodos de tempo cada vez menores



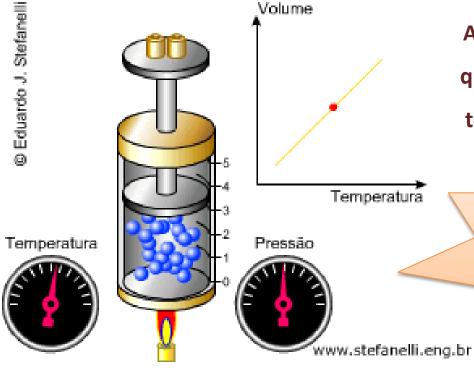
Intervalo de tempo	Velocidade média (m/s)
5 ≤ t ≤ 6	53,9
$5 \le t \le 5,1$ $5 \le t \le 5,05$	49,49 49,245
5 ≤ <i>t</i> ≤ 5,01	49,049
$5 \le t \le 5,001$	49,0049



O Limite

Aplicações Fenomenológicas: Lei de Gay-Lussac

"Em condições de massa e pressão (baixa) constantes, a variação do volume com a temperatura em graus Celsius é linear "Lei de Charles



Admitindo a validade dessa linearidade, quando o volume for igual a zero (V=0), a temperatura corresponderá a -273,16 °C

Como uma gás pode desaparecer em condições de resfriamento???

O Limite

Podemos resolver essa impossibilidade física – "quando o volume de um gás tender a zero (V \rightarrow 0), a temperatura tenderá a -273,16 °C ($\theta\rightarrow$ -273,16 °C)".

Matematicamente:

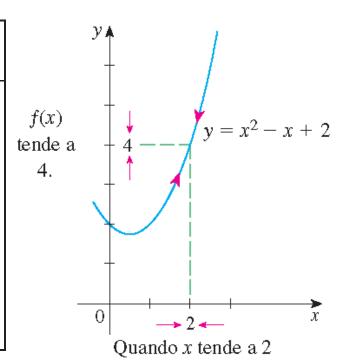
$$\lim_{\substack{V \to 0 \\ m,P,ctes}} \theta = -273,16 \, {}^{o}C$$

Noção intuitiva de limite

Sucessões numéricas		Dizemos que:
1, 2, 3, 4, 5,	Os termos tornam-se cada vez maiores, sem atingir um limite	$X \rightarrow + \infty$
$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots$	Os números aproximam-se cada vez mais de 1, sem nunca atingir esse valor	$x \rightarrow 1$
1, 0, -1, -2, -3,	Os termos tornam-se cada vez menores, sem atingir um limite	$X \rightarrow -\infty$
$1, \frac{3}{2}, 3, \frac{5}{4}, 5, \frac{6}{7}, 7, \dots$	Os termos oscilam sem tender a um limite	

Vamos analisar o comportamento da função f definida por $f(x) = x^2 - x + 2$ para valores de x próximos de 2.

x	f(x)	x	f(x)
1,0 1,5 1,8 1,9 1,95 1,99 1,995	2,000000 2,750000 3,440000 3,710000 3,852500 3,970100 3,985025 3,997001	3,0 2,5 2,2 2,1 2,05 2,01 2,005 2,001	8,000000 5,750000 4,640000 4,310000 4,152500 4,030100 4,015025 4,003001



$$\lim_{x \to 2} (x^2 - x + 2) = 4$$

O Limite - definição

1 Definição Suponha que f(x) seja definido quando está próximo ao número a. (Isso significa que f é definido em algum intervalo aberto que contenha a, exceto possivelmente no próprio a.) Então escrevemos

$$\lim_{x \to a} f(x) = L$$

e dizemos "o limite de f(x), quando x tende a a, é igual a L"

se pudermos tornar os valores de f(x) arbitrariamente próximos de L (tão próximos de L quanto quisermos), tornando x suficientemente próximo de a (por ambos os lados de a), mas não igual a a.

$$f(x) \rightarrow L$$
 quando $x \rightarrow a$

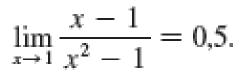
Observe na frase de definição de limite que" $x \neq a$ ". Isso significa que ao procurar o limite de f(x) quando x tende a a, nunca consideramos x = a. Na verdade, f(x) não precisa sequer estar definida quando x = a. A única coisa que importa é como f está definida próximo de a.

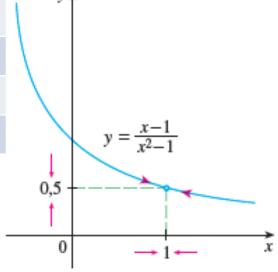
Estime o valor de $\lim_{x \to 1} \frac{x-1}{x^2-1}$

Note que a função não está definida quando x = 1.

f(x)					
0,666667					
0,526316					
0,502513					
0,500250					
0,500025					

f(x)					
0,400000					
0,476190					
0,497512					
0,499750					
0,499975					





$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0}{0}$$

???? A quantidade 0/0 não pode ser associada, de forma absoluta, a nenhum número. 0/0 é uma quantidade indeterminada e é chamada de símbolo de indeterminação

$$\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0^0, \infty^0 e^{-1}$$
 símbolos de indeterminação

 0^{∞} ??? Qualquer número MENOR QUE 1 elevado a infinito dá zero, logo: 0^{∞} =0.

Exemplo 6 - continuação

Na verdade o limite existe!! No exemplo:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} x + 1 = 2$$

O limite existe – Mas não significa que 0/0=2. 0/0 é uma quantidade indeterminada, não é igual a nada. O limite de uma outra função, dando o mesmo símbolo de indeterminação pode ser igual a outro valor.

a)

$$\lim_{x \to -2} \frac{x^3 + 8}{x + 2} = \frac{0}{0}$$

$$\lim_{x \to -2} \frac{x^3 + 8}{x + 2} = \lim_{x \to -2} \frac{(x + 2)(x^2 - 2x + 4)}{x + 2} = \lim_{x \to -2} (x^2 - 2x + 4) = 12$$

b)
$$\lim_{x \to \infty} \frac{3x^2 + 7}{8x^2 + 5x + 2} = \frac{\infty}{\infty}$$

$$\lim_{x \to \infty} \frac{3x^2 + 7}{8x^2 + 5x + 2} = \lim_{x \to \infty} \frac{3x^2}{8x^2} = \frac{3}{8}$$

Quando $x\rightarrow \infty$ os termos quadráticos divergem muito mais rapidamente que os demais termos do numerador e denominador

O Limite - importante

$$\lim_{x \to \infty} 1^x = 1$$

$$\lim_{x \to \infty} g(x)^x = 1^\infty$$

Lembretes

1. Relação Binomial

$$(a+b)^2 = a^2 + 2ab + b^2$$

 $(a+b)^3 = (a+b)(a+b)^2 = (a+b)(a^2 + 2ab + b^2) = a^3 + 3a^2b + 3ab^2 + b^3$

<u>Lembretes – continuação</u>

2.Produto Notável para resolver algumas indeterminações envolvendo raízes ou fatores do tipo " $x^n - a^n$ "

Para todo $n \in \mathbb{N}^*$, $n \ge 2$ temos: $a^n - b^n = (a - b)(a^{(n-1)} + a^{(n-2)}b + \dots + a^{(n-k)}b^{(k-1)} + \dots + ab^{(n-2)} + b^{(n-1)}).$ Assim.

- n=2, $a^2 b^2 = (a b)(a + b)$.
- n=3, $a^3 b^3 = (a b)(a^2 + ab + b^2)$.
- n=4, $a^4 b^4 = (a b)(a^3 + a^2b + ab^2 + b^3)$
- n=5, $a^5 b^5 = (a b)(a^4 + a^3b + a^2b^2 + ab^3 + b^4)$.

Limites Laterais

•A função de Heaviside *H*, é definida por

$$H(t) = \begin{cases} 0 & \text{se } t < 0 \\ 1 & \text{se } t \ge 0 \end{cases}$$

•*H* (*t*) tende a 0 quando *t* tende a 0 pela esquerda, e *H* (*t*) tende a 1 quando *t* tende a 0 pela direita. Indicamos essa situação simbolicamente escrevendo.

$$\lim_{t\to 0^-} H(t) = 0$$
 e $\lim_{t\to 0^+} H(t) = 1$

O símbolo " $t \rightarrow 0^{-1}$ " indica que estamos considerando somente valores de t menores que 0.

Da mesma forma, " $t \rightarrow 0^+$ " indica que estamos considerando somente valores de t maiores que 0.

Limites Laterais

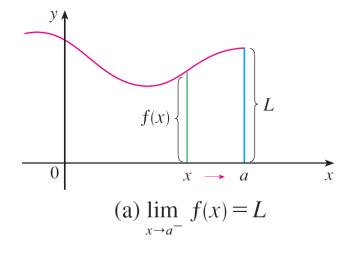
2 Definição Escrevemos

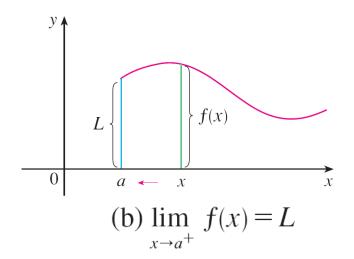
$$\lim_{x \to a^{-}} f(x) = L$$

e dizemos que o limite à esquerda de f(x) quando x tende a a [ou o limite d ef (x) quando x tende a a pela esquerda] é igual a L se pudermos tornar os valores de f(x) arbitrariamente próximos de L, para x suficientemente próximo de a e x menor que a.

De maneira semelhante, se exigirmos que x seja maior que a, obtemos "o **limite** a direita de f(x) quando x tende a a e é igual a obtemos L" e escrevemos

$$\lim_{x \to a^+} f(x) = L$$





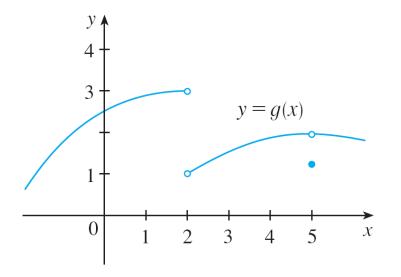
Limites Laterais

Comparando a Definição 1 com as definições de limites laterais, vemos ser verdadeiro o que segue.

$$\lim_{x \to a} f(x) = L \quad \text{se e somente se} \quad \lim_{x \to a^{-}} f(x) = L \quad \text{e} \quad \lim_{x \to a^{+}} f(x) = L$$

Exemplo 8

O gráfico de uma função g é apresentado.



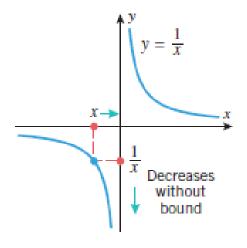
Use-o para estabelecer os valores (caso existam) dos seguintes limites:

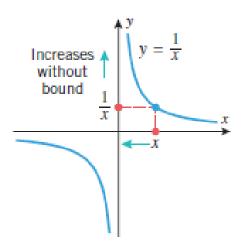
- a) $\lim_{x\to 2^-} g(x)$
- b) $\lim_{x\to 2^+} g(x)$
- c) $\lim_{x\to 2} g(x)$
- d) $\lim_{x\to 5^-} g(x)$
- e) $\lim_{x\to 5^+} g(x)$
- f) $\lim_{x\to 5} g(x)$

Vamos considerar o comportamento de $f(x) = \frac{1}{x}$ para valores de $x \approx 0$. Vemos que

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$





х	-1	-0.1	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01	0.1	1
$\frac{1}{x}$	-1	-10	-100	-1000	-10,000		10,000	1000	100	10	1

Left side

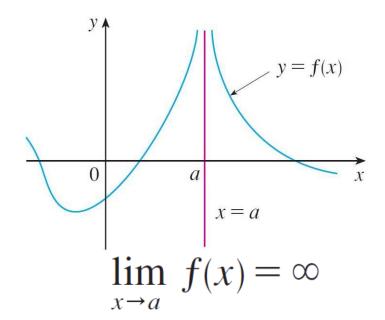
Right side

Definição Seja f uma função definida em ambos os lados de a, exceto possivelmente no próprio a. Então

$$\lim_{x \to a} f(x) = \infty$$

significa que podemos fazer os valores de f(x) ficarem arbitrariamente grandes (tão grandes quanto quisermos) tornando x suficientemente próximo de a, mas não igual a a.

Ou seja, se
$$\lim_{x\to a^-} f(x) = +\infty$$
 and $\lim_{x\to a^+} f(x) = +\infty$ então $\lim_{x\to a} f(x) = +\infty$

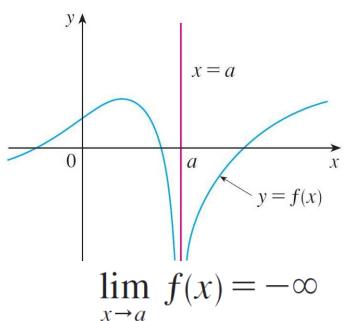


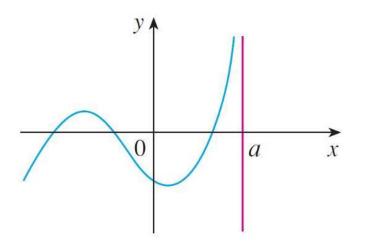
Definição Seja f definida em ambos os lados de a, exceto possivelmente no próprio a. Então

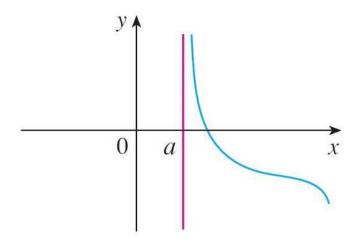
$$\lim_{x \to a} f(x) = -\infty$$

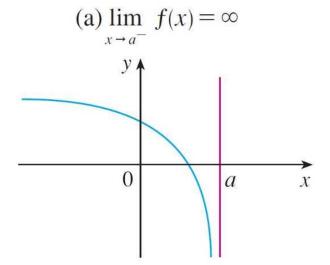
significa que os valores de f(x) podem ser arbitrariamente grandes, porém negativos, ao tornarmos x suficientemente próximo de a, mas não igual a a.

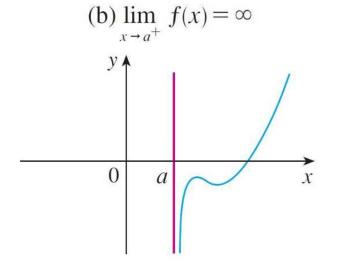
Ou seja, se
$$\lim_{x \to a^-} f(x) = -\infty$$
 and $\lim_{x \to a^+} f(x) = -\infty$ então $\lim_{x \to a} f(x) = -\infty$











$$(c) \lim_{x \to a^{-}} f(x) = -\infty$$

(d)
$$\lim_{x \to a^+} f(x) = -\infty$$

Definição A reta x = a é chamada assíntota vertical da curva y = f(x) se pelo menos uma das seguintes condições estiver satisfeita:

$$\lim_{x \to a} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = \infty$$

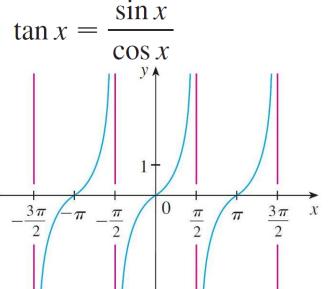
$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

Exemplo 9 Encontre as assíntotas verticais de $f(x) = \tan x$.



$$\lim_{x \to (\pi/2)^{-}} \operatorname{tg} x = \infty$$

$$\lim_{x \to (\pi/2)^{-}} \operatorname{tg} x = \infty \qquad \text{e} \qquad \lim_{x \to (\pi/2)^{+}} \operatorname{tg} x = -\infty.$$

$$x = \frac{\pi}{2}$$

$$\underset{x}{\longrightarrow} \quad x = (2n+1)\frac{\pi}{2} \quad n \text{ inteiro}$$

São todas assíntotas verticais de f(x) = tan x

Cálculos Usando Proriedades dos Limites

Propriedades dos Limites Supondo que c seja uma constante e os limites

$$\lim_{x \to a} f(x) \qquad e \qquad \lim_{x \to a} g(x)$$

existam, então

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{se } \lim_{x \to a} g(x) \neq 0$$

Cálculos Usando Proriedades dos Limites

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$
 onde $n \notin \text{um inteiro positivo}$

7.
$$\lim_{x \to a} c = c$$

8.
$$\lim_{x \to a} x = a$$

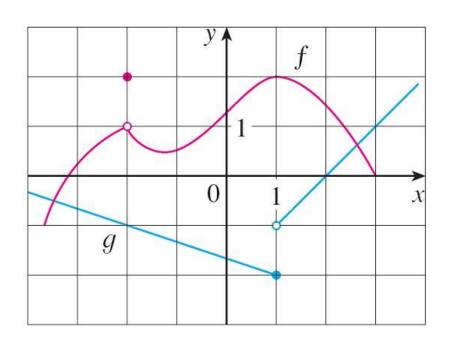
9.
$$\lim_{n \to a} x^n = a^n$$
 onde n é um inteiro positivo

10.
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$
 onde $n \notin \text{um}$ inteiro positivo (Se n for par, supomos que $a > 0$.)

11.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
 onde $n \notin \text{um inteiro positivo}$

Se *n* for par, supomos que
$$\lim_{x \to a} f(x) > 0$$
.

Use as Propriedades dos Limites e os gráficos de f e g na figura abaixo para calcular os seguintes limites, se eles existirem



(a)
$$\lim_{x \to -2} [f(x) + 5g(x)]$$

(b)
$$\lim_{x \to 1} [f(x)g(x)]$$

(b)
$$\lim_{x \to 1} [f(x)g(x)]$$
(c)
$$\lim_{x \to 2} \frac{f(x)}{g(x)}$$

Usando as propriedades dos limites encontre:

a)
$$\lim_{x \to 5} (x^2 - 4x + 3)$$
.

b)
$$\lim_{x \to 2} \frac{5x^3 + 4}{x - 3}$$
.

c)
$$\lim_{x \to 4^+} \frac{2-x}{(x-4)(x+2)}$$
 $\lim_{x \to 4^-} \frac{2-x}{(x-4)(x+2)}$ $\lim_{x \to 4} \frac{2-x}{(x-4)(x+2)}$

d)
$$\lim_{t\to 0} \frac{\sqrt{(t^2+9}-3)}{t^2}$$

e)
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3}$$

$$\lim_{x \to -4} \frac{2x + 8}{x^2 + x - 12}$$

$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{x^2 - 10x + 25}$$

A Definição Precisa de um Limite

2 Definição Seja f uma função definida em algum intervalo aberto que contenha o número a, exceto possivelmente no próprio a. Então dizemos que o limite de f(x) quando x tende a a é L, e escrevemos

$$\lim_{x \to a} f(x) = L$$

se para todo número $\varepsilon > 0$ houver um número $\delta > 0$ tal que

se
$$0 < |x - a| < \delta$$
 então $|f(x) - L| < \varepsilon$.

Uma vez que | x - a | é a distância de x a a e | f(x) - L | é a distância de f(x) a L, e como ε pode ser arbitrariamente pequeno, a definição de limite pode ser expressa em palavras da seguinte forma:

 $\lim_{x\to a} f(x) = L$ significa que a distância entre f(x) e L fica arbitrariamente pequena tomando-se a distância de x a a suficientemente pequena (mas não igual a 0).

Alternativamente, $\lim_{x\to a} f(x) = L$ significa que os valores de f(x) podem ser tornados tão próximos de L quanto desejarmos, tornando-se x suficientemente próximo de a (mas não igual a a).

Continuidade

O limite de uma função quando x ao tende a a pode muitas vezes ser encontrado simplesmente calculando o valor da função em a. Funções com essa propriedade são chamadas de contínuas em a.

1 Definição Uma função f é contínua em um número a se

$$\lim_{x \to a} f(x) = f(a).$$

Observe que a Definição 1 implicitamente requer três coisas para a continuidade de f em a:

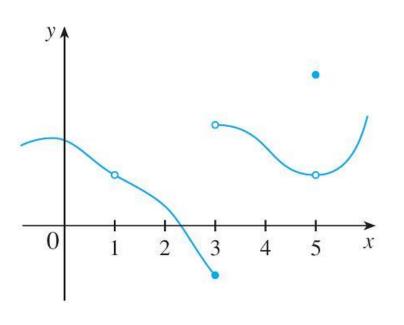
- •1. f(a) está definida (isto é, a está no domínio de f)
- •2. $\lim_{x \to a} f(x)$ existe

$$\lim_{x \to a} f(x) = f(a)$$

A definição diz que f é contínua em a se f (x) tende a f (a) quando x tende a a. Assim, uma função contínua f tem a propriedade que uma pequena mudança em x produz somente uma pequena alteração em f (x).

A Figura mostra o gráfico da função f. Em quais números f é descontínua? Por quê?

descontínua em 3.



Em a = 1 pois f(1) não está definida. Em a = 3. Aqui, f(3) está definida, mas $\lim_{x\to 3} f(x)$ não existe (pois os limites esquerdo e direito são diferentes). Logo f é

Em a=5. Aqui, f(5) está definida e $\lim_{x\to 5} f(x)$ existe (pois o limite esquerdo e o direito são iguais), porém $\lim_{x\to 5} f(x) \neq f(5)$

Continuidade

Uma função f é contínua à direita em um número a se Definição

$$\lim_{x \to a^+} f(x) = f(a)$$

e f é contínua à esquerda em a se

$$\lim_{x \to a^{-}} f(x) = f(a).$$

Se $f \in g$ forem contínuas em a e se c for uma constante, então as seguintes funções também são contínuas em a:

1.
$$f + g$$

2.
$$f - g$$
 3. cf

5.
$$\frac{f}{g}$$
 se $g(a) \neq 0$

<u>Continuidade</u>

5 Teorema

- (a) Qualquer polinômio é contínuo em toda a parte; ou seja, é contínuo em R = (-∞,∞).
- (b) Qualquer função racional é contínua sempre que estiver definida; ou seja, é contínua em seu domínio.

7 Teorema Os seguintes tipos de funções são contínuas para todo o número de seus domínios:

polinômios funções racionais funções raízes

funções trigonométricas funções trigonométricas inversas

funções exponenciais funções logarítmicas

- a) Mostre que a função $f(x) = 1 \sqrt{1 x^2}$ é contínua no intervalo [-1,1].
- b) Encontre $\lim_{x\to -2} \frac{x^3 + 2x^2 1}{5 3x}$
- c) Onde a função $f(x) = \frac{\ln x + tg^{-1}x}{x^2 1}$ é contínua?